12 research outputs found

    Cloth2Tex: A Customized Cloth Texture Generation Pipeline for 3D Virtual Try-On

    Full text link
    Fabricating and designing 3D garments has become extremely demanding with the increasing need for synthesizing realistic dressed persons for a variety of applications, e.g. 3D virtual try-on, digitalization of 2D clothes into 3D apparel, and cloth animation. It thus necessitates a simple and straightforward pipeline to obtain high-quality texture from simple input, such as 2D reference images. Since traditional warping-based texture generation methods require a significant number of control points to be manually selected for each type of garment, which can be a time-consuming and tedious process. We propose a novel method, called Cloth2Tex, which eliminates the human burden in this process. Cloth2Tex is a self-supervised method that generates texture maps with reasonable layout and structural consistency. Another key feature of Cloth2Tex is that it can be used to support high-fidelity texture inpainting. This is done by combining Cloth2Tex with a prevailing latent diffusion model. We evaluate our approach both qualitatively and quantitatively and demonstrate that Cloth2Tex can generate high-quality texture maps and achieve the best visual effects in comparison to other methods. Project page: tomguluson92.github.io/projects/cloth2tex/Comment: 15 pages, 15 figure

    Left atrial myxoma as a rare cause of stroke

    No full text
    Cerebrovascular events may attribute to the fragmentation of a cardiac tumor. Due to the small number of reported cases of large vascular occlusion-acute ischemic stroke (LVO-AIS) associated with atrial myxoma, current guidelines still follow the principle of intravenous thrombolysis priority, even if LVO-AIS patients are eligible for mechanical thrombectomy, and have not recommended the timing of cardiac surgery or preoperative anticoagulation and antithrombotic therapy. Surgical removal is the definitive therapy for cardiac myxomas, especially for left-sided myxomas. With this case, we aim to demonstrate the main challenges that clinicians may encounter when dealing with patients with AIS secondary to cardiac myxoma: the difficulties with clinical diagnosis, strategies for reperfusion therapy, and therapeutic management of cardiac myxoma

    Advances in genetic abnormalities, epigenetic reprogramming, and immune landscape of intracranial germ cell tumors

    No full text
    Abstract Intracranial germ cell tumors (IGCTs) are a rare subtype of central nervous system neoplasms that predominantly affect young individuals and exhibit a higher incidence in East Asia. IGCTs can be pathologically divided into two main categories: germinomas and non-germinomatous germ cell tumors (NGGCTs). Despite the scarcity of this disease, recent advancements in molecular biology techniques have facilitated the discovery of the inherent genetic and molecular characteristics of IGCTs. Somatic mutations that result in the activation of the KIT/RAS/MAPK and PI3K/AKT/mTOR pathways, chromosomal instability leading to characteristic changes in chromosomal fragments (notably 12p gain), and potentially diagnostic miRNAs (such as miR-371a-3p) may provide valuable insights for the efficient diagnosis, targeted therapy, and prognosis evaluation of IGCTs. Additionally, transcriptomic and methylomic analyses have provided new perspectives on the intrinsic development of IGCTs, further elucidating their equivalence with GCTs at other sites. The evaluation of the tumor immune landscape may guide prognosis prediction and immunotherapy for IGCT patients. Nevertheless, current research still faces challenges such as the absence of basic laboratory research systems, a single source of large sample research data, and a limited overall volume of research. The incorporation of larger sample sizes, the implementation of more innovative evaluation systems, and the employment of novel experimental methods are urgently required to become the focus of future research

    Additional file 6 of Combining single-cell RNA sequencing of peripheral blood mononuclear cells and exosomal transcriptome to reveal the cellular and genetic profiles in COPD

    No full text
    Additional file 6: Table S8. Single-cell differentially expressed mRNA in overall cells between COPD patient and healthy control. Table S9. Gene list for construction of protein–protein interaction networ

    Additional file 7 of Combining single-cell RNA sequencing of peripheral blood mononuclear cells and exosomal transcriptome to reveal the cellular and genetic profiles in COPD

    No full text
    Additional file 7: Fig. S3. Functional analysis of DEGs in other clusters between patients with COPD and healthy controls. Bubble plot of KEGG showing the biological function of DEGs in (A) cluster 0, (B) cluster 3, (C) cluster 5, (D) cluster 7, (E) cluster 8, (F) cluster 11, (G) cluster 13, (H) cluster 16. The dot sizes represent enrichment abundance while the colours represent the Q values (blue to red). DEGs: Differentially expressed genes, KEGG: Kyoto Encyclopedia of Genes and Genomes

    Additional file 5 of Combining single-cell RNA sequencing of peripheral blood mononuclear cells and exosomal transcriptome to reveal the cellular and genetic profiles in COPD

    No full text
    Additional file 5: Fig. S2. Functional analysis of marker genes in other clusters. Bubble plot of KEGG showing the biological function of (A) cluster 3, (B) cluster 4, (C) cluster 6, (D) cluster 9, (E) cluster 10, (F) cluster 11, (G) cluster 12, (H) cluster 13, (I) cluster 14, (J) cluster 15, (K) cluster 16, and (L) cluster 17. The dot sizes represent enrichment abundance while the colours represent the Q values (blue to red). KEGG: Kyoto Encyclopedia of Genes and Genomes

    Additional file 3 of Combining single-cell RNA sequencing of peripheral blood mononuclear cells and exosomal transcriptome to reveal the cellular and genetic profiles in COPD

    No full text
    Additional file 3: Fig. S1. Correlation between expression level of differentially expressed mRNA and clinical variables. The significant correlations between differentially expressed mRNA and clinical variables were plotted. CAT: COPD assessment test, sneu: sputum neutrophil, slym: sputum lymphocyte, smac: sputum macrophage, seos: sputum eosinophil

    Additional file 2 of Combining single-cell RNA sequencing of peripheral blood mononuclear cells and exosomal transcriptome to reveal the cellular and genetic profiles in COPD

    No full text
    Additional file 2: Table S2. Exosomal differentially expressed mRNA between COPD patient and healthy control. Table S3. Exosomal differentially expressed lncRNA between COPD patient and healthy control. Table S4. Exosomal differentially expressed circRNA between COPD patient and healthy control

    Additional file 4 of Combining single-cell RNA sequencing of peripheral blood mononuclear cells and exosomal transcriptome to reveal the cellular and genetic profiles in COPD

    No full text
    Additional file 4: Table S5. Pairs of mRNA-miRNA predicted by TargetScan. Table S6. Pairs of lncRNA-miRNA predicted by miRcode. Table S7. Pairs of circRNA-miRNA predicted by starBase
    corecore